
Postprint, October 2020

VDD: A Visual Drift Detection System for
Process Mining

Anton Yeshchenko, Jan Mendling
Vienna University of Economics and Business

Vienna, Austria
firstname.lastname@wu.ac.at

Claudio Di Ciccio
Sapienza University of Rome

Rome, Italy
claudio.diciccio@uniroma1.it

Artem Polyvyanyy
The University of Melbourne

Melbourne, Australia
artem.polyvyanyy@unimelb.edu.au

Abstract—Research on concept drift detection has inspired re-
cent advancements of process mining and expanding the growing
arsenal of process analysis tools. What has so far been missing
in this new research stream are techniques that support com-
prehensive process drift analysis in terms of localizing, drilling-
down, quantifying, and visualizing process drifts. In our research,
we built on ideas from concept drift, process mining, and
visualization research and present a novel web-based software
tool to analyze process drifts, called Visual Drift Detection (VDD).
Addressing the comprehensive analysis requirements, our tool
is of benefit to researchers and practitioners in the business
intelligence and process analytics area. It constitutes a valuable
aid to those who are involved in business process redesign
projects.

I. INTRODUCTION

Process mining is a research field that is concerned with
leveraging real-world event data for providing transparency
of how business processes operate. Process discovery is a
branch of process mining that takes as input event logs, i.e.,
collections of event sequences (traces) wherein every event
corresponds to an activity execution, and returns the model that
best describes the process generating the event log. However,
process discovery analyzes event logs without distinguishing
executions that are recent and that are far in the past. Therefore,
it does not explicitly show the behavioral changes that occur
in the time lapse during which those data is gathered.

These behavioral changes are a commonplace in the real-
world scenarios and introduce additional challenges for the
existing process mining techniques that are usually assume
stable patterns of behaviour. If a drift is present in the data,
it affects all stages of process mining namely discovery,
conformance and enhancement [1] As a consequence, the
discovered models are much more complex since they integrate
behaviour that is present in different points in time. Using data
affected by behavioral changes for process conformance also
hinders the results by detecting non-compliant behaviour of the
aggregated data from a process that might have been a norm
for a particular time-span. The process enhancement using the
event log containing changes would produce process models
annotated with information that is not significant at all time
stages. All these issues with process mining techniques could
be alleviated or turned into the strengths by first analysing
behaviour changes during process mining projects [2]. This is
to the benefit of the process analyst who might quickly suffer

Figure 1: Drift types, cf. [7, Fig. 2]

from models being too complex inducing too high cognitive
load to be comprehended in an accurate way [3].

Research on data mining has discussed changes over time
and distinguishes different types of so-called drift. Drift analysis
has been considered in prior research on process mining in
the following way. Recent works include such contributions
as Maaradji et al. [4] that use statistical tests in order to
find sudden and gradual drifts, Zheng et al. [5] transform the
event logs into relationship matrices and find sudden drifts
with change point detection algorithms, and Ostovar et al. [6]
describes the sudden drift detection algorithm that relies on
discovering a number of process trees from the event log
and the calculation of the number of change operations to
transform one tree into another. These papers focus on the
identification of some specific drift types, limiting to sudden
drifts and gradual drifts. These papers also do not provide an
interpretable solution for visualizing the content of the drifts.

In this paper, we present a technique for process drift
detection, called Visual Drift Detection (VDD). VDD extends
existing techniques with the following features. First, our
technique not only finds sudden drifts but also helps the
user to interpret the four different types of drifts shown in
Fig. 1. Second, it facilitates assessment of drifts through visual
interpretation [8] by the help of an interactive visualization
system. The Visual Drift Detection (VDD) system is built to
explain input data on different levels of granularity and supports
brushing and linking of the visualization views. Its back-end
builds on the formal rigor of temporal logic of DECLARE
constraints [9], [10] and time series analysis [11]. Key strengths
of VDD are the clustering of declarative behavioral constraints
that exhibit similar trends of change over time, the automatic
detection of drift points, and the automated characterization of



the drift types. We leverage this information about the trends
in the data and represent the changes on the process behavior
entailed by the drifts by means of enhanced Directly-Follows
graphs [12], to provide further analysis features. These features
allow us to detect and explain drifts that would otherwise go
undetected by other techniques. We illustrate the usage of the
VDD system on a real-world data set publicly available on the
4TU Data Centre.1 The event log contains events from sepsis
patients’ pathways in the hospital [13]. We will henceforth
refer to that data set as the Sepsis log.

This is a tool demonstration paper illustrating the new
software implementation of the VDD system. The theoretical
design and evaluations of the presented system have been
partially described in [14], [15]. We remark that our earlier
work did not include the advanced features we present here
for drift type characterization and for the visualization of the
entailed change on the process behavior.

II. THE VDD APPROACH

Our technique takes an event log (henceforth, log for short)
as an input and conducts a step-by-step visual analysis on
process drifts. It consists of five steps, which we shall explain
through the application of our tool on the case study of the
Sepsis log. Figure 2 depicts the visualization system with
connected views, showing the results of these steps.
1) Input and setting of parameters

In the first step the user provides an XES [16] and sets
the parameters of the technique that will influence what can
be observed. In particular, the Win size parameter determines
the granularity of the drift analysis, and more specifically the
number of traces that will be included in each time window.
Slide size describes the number of traces that should be skipped
to calculate the next window. The system offers hover-on
explanations about each parameter. The in-depth analysis of
the parameters is described in [14]. After that, the technique
calculates the event log statistics and automatically proposes
default parameters as shown in Fig. 2(h). Sepsis log has 1050
cases and 15 214 events with 16 event variants. We chose the
Win size of 50, Slide size of 25, and Cut threshold of 420 for
our analysis.
2) Window-based constraints mining and time series clustering

This is a preprocessing step for the visual analysis. We split
the log into sub-logs. From each resulting part of the log, we
measure the degree to which a set of behavioral relations in
the form of declarative process constraints hold true in each
window. In particular, we resort on the well-known declarative
language DECLARE, whose full repertoire of constraints is
described in [17]. The DECLARE constraints represent the
behavior of a process by bind the occurrence of activities
to the verification of certain conditions over other events
in the trace. For example, PRECEDENCEpRelease C, IV Liquidq
states that IV Liquid can occur in the trace only if Release C
occurred earlier. CHAINPRECEDENCEpRelease C, Leucocytesq

1https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

is a chaining constraint, which imposes that Leucocytes can
occur only if Release C is the activity that occur immediately
before it (i.e., no other activities can occur in between).
NOTSUCCESSIONpER Registration, IV Liquidq is a negative con-
straint as it imposes that ER Registration cannot be followed
by IV Liquid. For all constraints, we measure their support,
confidence and interest factor. Based on established metrics of
association rule mining [18], they indicate the extent to which
the constraints are satisfied in the log traces. The detailed
explanation of how those measures are computed is out of
scope for this paper. For further information on that matter,
the interested reader can refer to [10].

Specifically, the VDD system runs a background process
to calculate the measures of DECLARE constraints and group
the resulting time series into behavior clusters. First, traces in
the log are sorted by the timestamp of their respective first
events. Thereupon, we extract a sub-log of the given Win size
from the first traces. We let the window slide over the log at
the given Slide size. From each sub-log we mine the set of
DECLARE constraints and compute their measures. In our case
study, with the window size set to 50 and the sliding step to
25 we mine DECLARE constraints out of 41 sub-logs. For each
sub-log, we compute the confidence of 3424 constraints. This
step proceeds with the extraction of multi-variate time series
that represent the trends of the constraints’ confidence.

As a result of this step, we obtain numerous time series (one
per constraint and measure) which we cluster into groups that
exhibit similar confidence trends. Henceforth, we will refer to
those groups as behavior clusters. In particular, we resort on
hierarchical clustering [19] to find groups of constraints that
exhibit similar confidence trends (henceforth, behavior clusters).
Figure 2(a) shows the values of the time series (i.e., the
confidence measures) through the plasma color-blind friendly
color map [8], from blue (low peak) to yellow (high peak).
The y-axis lists the constraints, the starting timestamp of the
sub-logs lie on the x-axis. Constraints are sorted vertically by
the similarity of their measures’ trends. White dotted horizontal
lines visually separate the behavior clusters. On the Sepsis data
set, the Drift Map shows 18 behavior clusters.

3) Visualization of drifts

In this step, we detect change points in the set of time
series, both for the whole log and each cluster separately.
Those change points are what we identify as drift points. In
the following, we will interchangeably name them as change
or drift points depending on the context. We plot drift points
in Drift Maps (Figure 2(a)) and Drift Charts (Figure 2(b)) to
effectively communicate the drifts to the user.

The Drift Map shown in Fig. 2(a) illustrates the detected
drift points over the time in the event log, which we shall
collectively name as drift situation. We add vertical lines to
mark such drift points. Drift Charts (e.g., those in Fig. 2(b))
have time on the x-axis and the average confidence of the
constraints in a behavior cluster on the y-axis. We add vertical
lines to denote drift points as in Drift Maps. In Fig. 2(b) we
focus on behavior cluster 18 of the Sepsis log. We can observe

https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460


Figure 2: The user interface of the VDD system, running on the Sepsis event log [13]. (a) Drift Map. (b) Drift Chart. (c)
Autocorrelation plot. (d) Erratic measure. (e) Spread of constraints view. (f) Incremental drifts test. (g) Extended Directly-Follows
Graph. (i) Behavior cluster selection menu.

two drift points.
We also compute the values of measures called spread

of constraints and erratic measure to quantify the extent of
the drifting behavior [14]. The spread of constraints (shown
in Fig. 2(e)) intuitively indicates how variable and subject to
change the event log is. The measure ranges from 0 to 1: the
more the behavior changes over time, the higher the value
gets. In the Sepsis log, the measured spread of constraints is
0.247, which indicates a relatively small rate of change in the
behavior. The erratic measure (shown in Fig. 2(d)) shows how
a chosen cluster (Fig. 2(i)) compares to the cluster with the
maximum degree of change in the same log.

4) Drift type detection

In this step, we use a range of methods to analyze drift types
(as those shown in Fig. 1) and visualize them in the connected
views. We use multi-variate time series change point detection
algorithms to detect sudden drifts. In particular, we resort on
the Pruned Exact Linear Time (PELT) algorithm [20] to detect
change points in the whole multi-variate time series as well
as within the behavior clusters. Thereupon, we make use of
the stationarity analysis in ensemble with the visual inspection
of Drift Charts to highlight gradual and incremental drifts.
With the aid of autocorrelation plots, we seek for the behavior
clusters exposing reoccurring drifts.

To show the results of this step, we resort on a mix of
graphical and numerical representations: the aforementioned

Drift Map together with Drift Charts, autocorrelation plots,
and stationarity tests. In the chosen cluster 18, the system
automatically identifies two sudden drifts as shown in the
Drift Chart (Fig. 2(b)). To check for incremental drifts, we
inspect the results of the stationarity test (shown in Fig. 2(f)).
For the chosen behavior cluster, the VDD system reports no
incremental drift. Figure 2(c) depicts an autocorrelation plot
that shows how the time series correlates with itself with a
step defined in the y-axis. The blue area on this plot shows
the significant region of the analysis. Cluster 18 reveals an
autocorrelation on step 2, meaning that the drift shows signs
of seasonality – thus being classifiable as a reoccurring drift.

5) Understanding the drift behavior

To get an understanding of the effect of drifts on the process
behavior, we visually represent the general behavior found in
the log extended with specific behavior shown in a chosen
behavior cluster. In particular, we use the gathered information
on the measured DECLARE constraints in a behavior cluster
and draw it on top of Directly-Follows graphs [12] such
as the one in Fig. 2(g). A Directly-Follows graph connects
via arcs the activities (nodes) with those other activities
that followed at least once in a trace. Arcs are weighted
by the number of such sequences. Nodes are weighted by
the frequency with which the related activities occur in the
log. The Directly-Follows graph depicts the behavior that
is common to the entire event log. We add arcs highlighted



with different colors that represent additional DECLARE,
cluster-specific constraints. Negative DECLARE constraints are
colored in red. Chaining constraints are in green. All other
relationships are in blue. For cluster 18 we see from Fig. 2(g)
that activities Release C and Leucocytes occur in sequence,
bound by the CHAINPRECEDENCEpRelease C, Leucocytesq
constraint. Furthermore, PRECEDENCEpRelease C, IV Liquidq
and PRECEDENCEpRelease C, IV Antibioticsq suggest that
IV Liquid and IV Antibiotics require Release C to occur before,
unlike in the general behavior.

III. MATURITY, DOCUMENTATION AND SCREENCAST

We implemented the VDD system as a Python-based stand-
alone program for command line execution, and as a web
application with back-end and front-end parts. The algorithms
are implemented using Python 3, resorting on the scipy library
for time-series clustering and on the ruptures library for
change point identification. We use PM4Py2 [21] for the
Directly-Follows Graph visualization. We use the MINERful3

Java package for the discovery and measuring of DECLARE
constraints [10]. The front-end of the tool is implemented with
the React JavaScript library. The back-end is implemented with
flask python library. We run our experiments using a laptop
equipped with an Intel Core i5 at 2.40GHz � 2 with 8GB
of RAM. With this modest hardware, the tool was able to
process data and produce the analysis outcome in about 17
seconds using a real-size event log with 15 214 events from 16
activities over 1050 traces. This indicates that the VDD system
has reached a fairly large degree of maturity as it performs
well in terms of scalability.

We have created a project website for the VDD
system, from which it can be downloaded together
with its sources at https://github.com/yesanton/
Process-Drift-Visualization-With-Declare. It is free for
academic and non-commercial use under the MIT license.
On the project website, we provide documentation on its
installation and first run. The web tool with a graphical
interface is also available at https://yesanton.github.io/driftvis,
to be used for testing without the need to install the software
on a local machine. A screencast documenting its usage is
available at https://youtu.be/mHOgVBZ4Imc. The GitHub
project page contains the step by step tutorial of how to
use the web-based tool. It is available at https://github.
com/yesanton/Process-Drift-Visualization-With-Declare/blob/
master/publications/icpm-2020-demo-tutorial.pdf

In future work, we will focus on the prediction of drifts in
running processes and the improvements of the interactivity of
the visualization system. Furthermore, we will conduct user
studies to assess the perceived quality of the tool.
Acknowledgements.

This work is partially funded by the EU H2020 program
under MSCA-RISE agreement 645751 (RISE BPM). Artem
Polyvyanyy is partly supported by the Australian Research

2http://pm4py.org, https://github.com/pm4py
3https://github.com/cdc08x/MINERful

Council Discovery Project DP180102839. Claudio Di Ciccio
is partly supported by the MIUR under grant “Dipartimenti
di eccellenza 2018-2022” of the Department of Computer
Science of Sapienza University of Rome. Anton Yeshchenko
thanks Maryna Zadoianchuk and Oleksii Tkachenko for their
assistance during the development of the web application.

REFERENCES

[1] W. M. P. van der Aalst, Process Mining - Data Science in Action.
Springer, 2016.

[2] M. L. van Eck, X. Lu, S. J. J. Leemans, and W. M. P. van der Aalst,
“PM ˆ2 : A process mining project methodology,” in CAiSE. Springer,
2015, pp. 297–313.

[3] R. Moreno and R. E. Mayer, “Visual presentations in multimedia learning:
Conditions that overload visual working memory,” in VISUAL, D. P.
Huijsmans and A. W. M. Smeulders, Eds. Springer, 1999, pp. 793–800.

[4] A. Maaradji, M. Dumas, M. La Rosa, and A. Ostovar, “Detecting sudden
and gradual drifts in business processes from execution traces,” IEEE
TKDE, vol. 29, no. 10, pp. 2140–2154, 2017.

[5] C. Zheng, L. Wen, and J. Wang, “Detecting process concept drifts from
event logs,” in OTM. Springer, 2017, pp. 524–542.

[6] A. Ostovar, S. J. J. Leemans, and M. L. Rosa, “Robust drift
characterization from event streams of business processes,” ACM Trans.
Knowl. Discov. Data, vol. 14, no. 3, pp. 30:1–30:57, 2020. [Online].
Available: https://doi.org/10.1145/3375398

[7] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Comput. Surv., vol. 46, no. 4,
pp. 44:1–44:37, 2014.

[8] C. Ware, Information visualization: perception for design. Elsevier,
2012.

[9] W. M. P. van der Aalst and M. Pesic, “DecSerFlow: Towards a truly
declarative service flow language,” in WS-FM, ser. Lecture Notes in
Computer Science, vol. 4184. Springer, 2006, pp. 1–23.

[10] C. Di Ciccio and M. Mecella, “On the discovery of declarative control
flows for artful processes,” ACM TMIS, vol. 5, no. 4, pp. 24:1–24:37,
2015.

[11] G. C. Reinsel, Elements of multivariate time series analysis. Springer,
1993.

[12] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Discovering block-
structured process models from event logs - A constructive approach,”
in PETRI NETS. Springer, 2013, pp. 311–329.

[13] F. Mannhardt and D. Blinde, “Analyzing the trajectories of patients with
sepsis using process mining,” in BPMDS/EMMSAD. CEUR-WS.org,
2017, pp. 72–80.

[14] A. Yeshchenko, C. Di Ciccio, J. Mendling, and A. Polyvyanyy, “Compre-
hensive process drift detection with visual analytics,” in ER. Springer,
2019, in print.

[15] A. Yeshchenko, C. D. Ciccio, J. Mendling, and A. Polyvyanyy, “Com-
prehensive process drift analysis with the visual drift detection tool,” in
ER Demos. CEUR-WS.org, 2019, pp. 108–112.

[16] “IEEE standard for extensible event stream (xes) for achieving
interoperability in event logs and event streams,” pp. 1–50, Nov 2016.
[Online]. Available: http://dx.doi.org/10.1109/IEEESTD.2016.7740858

[17] W. M. P. van der Aalst and M. Pesic, “DecSerFlow: Towards a truly
declarative service flow language,” in WS-FM. Springer, 2006, pp. 1–23.

[18] J. Adamo, Data mining for association rules and sequential patterns -
sequential and parallel algorithms, J. Adamo, Ed. Springer New York,
2001.

[19] S. Aghabozorgi, A. Seyed Shirkhorshidi, and T. Ying Wah, “Time-series
clustering - a decade review,” IS, vol. 53, no. C, pp. 16–38, Oct. 2015.

[20] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of
changepoints with a linear computational cost,” Journal of the American
Statistical Association, vol. 107, no. 500, pp. 1590–1598, 2012.

[21] A. Berti, S. J. van Zelst, and W. M. P. van der Aalst, “Process mining for
python (pm4py): Bridging the gap between process- and data science,”
CoRR, vol. abs/1905.06169, 2019.

https://github.com/yesanton/Process-Drift-Visualization-With-Declare
https://github.com/yesanton/Process-Drift-Visualization-With-Declare
https://yesanton.github.io/driftvis
https://youtu.be/mHOgVBZ4Imc
https://github.com/yesanton/Process-Drift-Visualization-With-Declare/blob/master/publications/icpm-2020-demo-tutorial.pdf
https://github.com/yesanton/Process-Drift-Visualization-With-Declare/blob/master/publications/icpm-2020-demo-tutorial.pdf
https://github.com/yesanton/Process-Drift-Visualization-With-Declare/blob/master/publications/icpm-2020-demo-tutorial.pdf
http://pm4py.org
https://github.com/pm4py
https://github.com/cdc08x/MINERful
https://doi.org/10.1145/3375398
http://dx.doi.org/10.1109/IEEESTD.2016.7740858

	Introduction
	The dvd Approach
	Input and setting of parameters
	Window-based constraints mining and time series clustering
	Visualization of drifts
	Drift type detection
	Understanding the drift behavior


	Maturity, Documentation and Screencast
	References

